
Niranjan Suri

Institute for Human & Machine Cognition Shmc http://www.i hrnc.us,

0

Definition
Movement of Data, Code, Computation,
and Execution State from one System to
Another Over a Network Link

1

Types of Mobility
w Physical Mobility - Movement of Physical

Objects in the Environment

w “Logical” Mobility - Movement of Bits Over
a Communications Link from One
Computer to Another
e Types: Data, Code, Computation, Execution

nMode: Push, Pull
State

Mobile Data
w Movement of Data From One Host to

Another
The Most Common Form of Mobility

Encompasses everything except code,

c At some level - everything is data

w Not Important For Our Purposes

computation, state

2

Mobility - Another Perspective
RPC, Servlets,

Stored Procedures
A

Mobile Remote
Code + Installation

J
Checkpointing

Mobile Code
w Allows executable code to be moved to a

May use the push or pull model
new host

o Pull: Applets
E Push: Remote Installation

native) or source
Code may be binary (intermediate or

3

Mobile Code
Advantages:
c Dynamically change capabilities

rn Download new code to add / change / update

H Remove code when no longer needed
capabilities of platform

Problems:
nSecurity concerns due to untrusted I

unchecked code
Code could be malicious, buggy, and/or tampered

Mobile Computation
Evolution of Remote Computation

RPC, RSH, RMI, Servlets, Stored Procedures,
CORBA

Allows one system to run a computation

Utilize resources on remote system

H Access resources on remote system

on another system

oCPU, memory

e Files, databases, etc.

Mobile State
Evolution of State Capture
o Checkpointing

Allows execution state
captured and moved
State may be machine
independent
May contain

of a process

specific

ci State of single or multiple threads
Code

to be

or machine

Mobility Matrix
Data

Browsing, t SETI@home

Push FTP Upload

Code

Applets,
JavaScript,
Jini

Remote
Installation,
Mobile Agents

Computation

While You’re
Away (WYA)

RPC, RMI,
Grid
Computing

Execution
State

While You’re
Away (WYA)

Migration

5

Weak -vs- Strong -vs- Forced
Weak Mobility
u Computing entity requests movement
c1 Entity “restarts” execution after move operation
o Combines Mobile Code and Mobile Computation

Computing entity requests movement
u Execution continues after movement
ci Combines Mobile Code, Mobile Computation, and Mobile State

ii External, asynchronous request for movement
Execution continues after movement
Computing entity may not be aware of movement

u Combines Mobile Code, Mobile Computation, and Mobile State

Strong Mobility

Forced Mobility

I Weak -vs- Strong -vs- Forced
RPC, Servlets,

Stored Procedures Weak
Mobility

c
Strong I

9 Forced i Mobility j
I

Process
Migration

0

Remote
Installation

Checkpointing

6

Weak Mobility Example One
public class Visitor

{
public V i s i t o r 0 I

System.sut .println (“Starting”) ;
move (“hostl”, this, “a”);

I
public void a 0 (

System.out .println (“On host one”) ;
move (“host2”, this, ”b”) ;

1
public void b o t

System.out.println (“On host two”);
move (‘host3“. this, ”c”) ;

I
public void c 0 {

System.out.println (”On host three”) ;
move (“hostl”, this, “a”) ;

I
I

Weak Mobility Example Two
public class Visitor
I

public Visitor() !
System.out.println (“Starting”);
go (“hostl”, this) ;

1
public void r u n 0 {

if ! ~ where == 0) !
Systern.out.println (“ O n host one”);

~ where = 1;
go (‘host2”, this);

I
else if (-where == 1) (

Systern.out.println (‘On host t w o ”) ;
- where = 2;
go (“hoat3”, this) :

I
else if (where == 2) (

Syst&.out.println (“ o n host three”) ;

go (‘hostl”, this);
where = 0;

1
I
private int _where = 0;

1

7

Strong Mobility Example
p u b l i c c l a s s V i s i t o r

p u b l i c V i s i t o r 0

{

{

S y s t e r n . o u t .pr int111 (“ S t a r t i n g ”) ;

w h i l e (1) {

go (“ h o s t l ”) ;

S y s t e m . o u t . p r i n t l n

g o (“ h o s t 2 ”) ;

S y s t e r n . o u t . p r i n t l n

go (“ h o s t 3 ”) ;

S y s t e r n . o u t . p r i n t 1 n

)

1
)

‘On h o s t o n e ”) ;

“On h o s t t w o ”) ;

“On h o s t t h r e e ”) ;

Forced Mobility Example
Visitor Not Appropriate

Mobility is dictated by external entity
Examples :
u Survivability
u Load-balancing
Concrete Example - While You’re Away

ci System for utilizing idle workstations
c Abstraction - roaming computations

(WYA)

8

VVYA Design

4-

6-

\

WYA Server

Job Queue

Free Workstation

I I I

W A Programming Abstraction
public class Mycomputation extends RoamingComputation
(

public void init (String args [I)

(

)

/ / Perform any initiallzation required :?ere

public void compute0
(

I
/ / Actual computations go here

public void reportResults0
(

I
/ / Report results bacc to the user here

I

Forced Mobility Example Two

R"""l"g

public class Jumper
I

public J u m p e r 0 (

System.out.println ("Starting");
new M o v e r O . s t a r t 0 ;
uhila (1) {

1
Synten.out.println ("hello, w o r l d ") ;

prepare to capture I
caplure Wrlle O"1
state Slate

public class Mover extends Thread
i

public void r u n 0 !
for (int i = 0; i < hosts.iength; I++) (

go (hosts[i]);
Thread.sleep (100);

I
1

1

Process Cvcle

To T,

10

Mobility Abstraction
Process is Continuously Moving
Code Has no Knowledge of Current Host
Code Prefixes Operation with a Scope that
Identifies the Host
Operation Gets Performed when
is on that Host

Process

Visitor Example Revisited
p u b l i c class V i s i r o r
{

p u b l i c V i s i t o r 0
{

Systern.out . p r i n t l n ("Star t ing") ;
whi le (1) {

hl .Sys tem.out . p r i n t l n ("On h o s t one") ;
h2.System.out . p r i n t l n ("On hos t two");
h3.System.cut . p r m t l n ("On h o s t t h r c c ") ;

)

)

11

One Possible Realization.. .
H Hosts Form a Logical Ring
H Process is Created on one Host
H At Fixed Intervals (Timeslices?), Process is Migrated

from Host, to Host,,,
H Generic Operations May be Performed on Any Host
H Operations Qualified by a Host will be Performed only on

that Host
u Runtime system blocks until process is on required host
u Runtime system possibly leaves process on required host until

operation is completed
u A form of critical section Host,

Host,

Host,

Another Example
publlc class WasteTirne
{

public WasteTimc 0
{

Systcrn.out .println (“Starting”) ;
while (1) i

float a - hl.rezdValue0;
float b = Math.sin (a);
float c - Meth.cos (bl;
h2. writevalue (c) ;
float c = Math.acos (cl;
float c - Math.asin (d) :

h3. writevaluc (e) ;

12

Variation on the Theme
rn Process Migration Path is Determined by

Operation to be Performed
c If program wants to do something on Host,,

migrate directly to Host,

rn Could Result in Certain Hosts being
Ignored

Undesirable if hosts deliver asynchronous
events to process

I n te rest i n g " Perform a n ce"
Quest ions
rn What is a Good Timeslice?

What is the Maximum Number of Hosts?

rn When do you Start Thrashing?

rn Answers Depend on Current State of the

rn What can we Project about the Future?
Art in Implementation

Interesting “Abstraction” Questions
What is the Best Abstraction?
u Is mobility dictated by the program?
G Is program dictated by the mobility?

0 Can System. CurrentTimeMillis () run

Will cause clock synchronization problems
Division Between Higher-order Functions and
Lower-order Functions

rn Splitting / Joining Groups
o Equivalent of a fork() /join()?

What about Time?

anywhere?

Available Resource - Aroma VM
Clean-room implementation

rn State capture mechanism
rn Dynamic, fine-grained resource control
o Disk, Network, CPU

rn JDK 1.2.2 compatible
c Uses Java Platform API from JRE 1.2.2
L No AWT / Swing

(SPARC)
Ported to Win32 (x86), Linux (x86), Solaris

No Just-In-Time compilation (in progress)

14

ASA Ames Research Cente

Multiple component nodes embody:
- Computational capability
- Sensing capability
- Actuation capability

- De-centralized processing and control
- Robustness
- Process adaptivity

- Distributed sensing

Computational Mobility emphasizes:

But other modalities are also possibleldesirable:

- Sensors residing in the component nodes are spatially
distributed 3 improved coverage in space, time, and
wavelength

- Distributed Actuation
Actuation residing in the component nodes are also spatially
distributed 3 force and torque manipulation beyond what is
possible from a single node

&[File] 1

Traditional Robotics
Kinematic chains

Forces and torques are transmitted through mechanical linkages to the end
effector
The system is limited in the external forces and torques it can exert through
the end effector by the kinematic chain
System mass and size scales with the size of the object(s) you wish to
manipulate Y j

4

Distributed Actuation
Distributed ComputationallSensinglActuation Nodes
- Forces and torques are transmitted by each unconnected node
- External forces and torques are possible that are not limited by any

mechanical connection
- System mass becomes independent of the size of the object(s) you wish to

manipulate

- Possibilities:
* Conformal Forces

- Liftinglpositioning large objects
- Liftinglpositioning delicate object
- Multi-component assembly
- Large size-scale compressive forces
- Large size-scale expansion forces

&[File] 2

Robot Team Scenario

Robotic exploration of Mars
Mobile robots will serve as the remote sensors and data collectors
for scientists.
To create an outpost for such long-term exploration, robots need to
- assemble solar power generation stations,
- map sites and collect science data,
- communicate with Earth on a regular basis.

In one scenario, a large number of robots (20-30) are sent, many
with different capabilities. Some of the robots specialize in heavy
moving and lifting, some in science data collection, some in drilling
and coring, and some in communication. The rovers have different,
but overlapping, capabilities - different sensors, different resolutions
and fields of view, even different mobility, such as both wheeled and
aerial vehicles.

1

Robotic exploration of Mars
Upon landing, the rovers search for a location
suitable in size and terrain for a base station.
Once such a location is found, rovers with
appropriate capabilities form several teams to
construct the base station capable of housing
supplies and generating energy.
- Two rovers carry parts, such as solar panels, that are

- Complementary capabilities are exploited - for
too large for a single rover.

example, to align and fasten trusses, rovers with
manipulators receive assistance from camera-bearing
rovers that position themselves for advantageous
viewing angles.

Robotic exploration of Mars
Rover failures are addressed by dispatching a
rover with diagnostic capabilities. The
diagnostic rover can use its cameras to view the
failed robot to see if it can be aided in the field
(e.g., if it has a stuck wheel or is high-centered),
or it may drag the rover back to the base station
to be repaired by replacement of failed modules.
In the meantime, another robot with the same (or
similar) capabilities can be substituted, so as to
complete the original task with minimal
interruptions.

2

.

Robotic exploration of Mars
At any given time, different teams of rovers may be involved in
exploration, base-station construction/maintenance, and rover
diagnosis/repair.
Many tasks will be time critical, requiring execution within hard
deadlines (e.g., repair of a failed power generation station) or
synchronization with external events (communication satellite
visibility, periods of sunlight).
The teams form dynamically, depending on the task, environment,
and capabilities and availability of the various robots to best meet
mission requirements over time.
The rovers negotiate their individual roles, ensure safety of the
group and themselves, and coordinate their precise actions,
attempting as a group to avoid unnecessary travel time, to minimize
reconfiguration and wait time, and to prefer more reliable
alternatives in cases of overlapping capabilities.
The challenge is to keep all the robots healthy and busy in
appropriate tasks, in order to maximize the scientific data collected.

Robotic exploration of Mars
Similar scenarios exist for domains such as habitat
construction, space solar power construction and
maintenance, and Space Station maintenance.
- For instance, consider an inspection robot that has identified a

failed component on the Space Station. It tries to assemble a
team of robots to replace the failed component. After
negotiation, a courier robot (capable of retrievin the necessary

the failed device) take responsibility for the repair task, leaving
the inspection robot free to continue inspection. While the
courier collects the replacement part, the repair robot evaluates
the problem and plans its course of action, possibly seeking
additional aid if it encounters unexpected difficulties it is unable
to resolve. Upon arrival with the replacement part, the courier
and repair robot ti htly coordinate their actions, turning
themselves into wiat is effectively a single high degree-of-
freedom robot.

replacement part) and a repair robot (capable o 9 swapping-out

3

Coordinated Science Observation

Requires inter-satellite communication

_- - -

Coo rd i na ted Sci en ce 0 bse rva t ion

Discard future observations
Insert new obs.

4

Coord hated Science
0 bse rvat ion

7
& future observations

now

5

I

Niranjan Suri

. .-

Goals
Extend a standard Procedural Language -
Java -to operate in a ScatterBot
environment

might be realized

arise in the proposed language and
implementation

Hypothesize about how such a language

Examine ScatterBot-specific issues that

. -- I 9% I Questions

I Is it right to call Java a procedural
language?

Basics
Assume that each bot part is represented
by an object (an instance of some class)
oThe type of the object (Le., the class)

represents the type of the bot-part
We can leverage object-oriented notions of
subclassing (is-a relationships) and
containment (part-of relationships) to model
bot-parts

2

“Types” of 0 bjects
rn There are Two Fundamental “Types” of

Objects
Generic Java Objects (e.g., Strings, Vectors,
etc.)

nObjects “Bound” to Bot Parts (Bot Objects)
Similarity to Java native methods

Operations on Objects
rn Three Basic Operations:

Read a variable
Write a variable

cCall a method

rn Same Operations on Bot Objects

3

Implementation Thoughts
At the Java VM level, most bytecodes
manipulate the operand stack and local
variables - these can execute anywhere
There are 3 types of bytecodes to worry about:
t; putstatic, getstatic
E putfield, getfield
G Invokevirtual, invokestatic, invokeinterface,

invokespecial
If any of these are executed on a Bot Object, the
VM must execute the resultant operation only on
the corresponding Bot part

Multiple Conditional Example
public class Test
{

public void dosomething0
{

if (a & & b & & c & & d & & e) {

I
System.out .println ("eureka") ;

I

private boolean a;
private boolean b;
private boolean c;
private boolean d;
private boolean e;

4

I

Multiple Conditiona Example
0 aload-0
1 getfield Test/a Z
4 ifeq 4 3
7 aload-0
8 getfield Test/b Z
11 ifeq 43
14 aload-0
15 getfield Test/c Z
18 ifeq 43
21 aload-0
22 getfield Test/d Z
25 ifeq 43
28 aload-0
29 getfield Test/e Z
32 ifeq 43
35 getstatic java/lang/System/out Ljava/io/PrintStrean;
38 ldc "eureka"
40 invokevirtual java/io/PrintStream/println(Ljava/lang/String;)v
43 return

I m p le me n ta t i on I ss u es
What About Multiple Threads?

w How is Synchronization Handled?
w Are Methods Blocking on Non-Blocking?
E If you invoke a method to move a robot to a

certain position, does the method return
before or after the robot moves to that
position?

4 Concern: Does Allowing Multiple Threads
Make the Program As Complex As A
M u It i- Ag e n t System?

5

Potential Example To Elaborate
Two robots, one stationary with a
package, one mobile with an arm
objects up

sensor
to pick

The programming problem is to write code
to make the mobile robot go pick things up
and bring them back to the stationary
robot to examine with the sensor package

Robot Coordination Example

6

I ex
B

Robot Coordination Example (2)

public class Reirlerel

.w*,
Enhancing the Coordination
Example

What is the model for multiple retrievers?
Issues to consider:
c Multiple retrievers need to be tasked in

c Retrievers may finish at different times
c Retrievers may collide (or compete as they

parallel

bring the samples to the analyzer)

I

I I Scatterbots

Daniel Cooke
Computer Science Department
Texas Tech University

v

I

AI s
I

Tuple Space

I Tuple Space is an abstraction for the communication path
‘Bots are connected to the space

Center for Advanced Intelligent

:AIS
Tuple Space

Executive "lives" in the entire space - all bots and the TS

'Bots native codes live only on particular 'bot(s)

Executive is only one who can place data in TS

Natives can only get codes/data from the TS

Executive can place data in the TS

Center for Advanced intelligent
Systems

cAIs
Tuple Space - Strict

I

Executive Moves to Bot with Data to be Processed and

Non-strict - the executive may place the distilled results
in the tuple space and pair it with bots who need the
information

New bots can be added via the tuple space

Bots can be removed via the tuple space

1;- then moves on with distilled data

Center for Advanced intelligent

2

AIS

i

DA TA!

Bot 1

Tuple Space - Strict

~~

Bot 2

Bot I Ex + bi

Bot n

When a Bot(i) has important data the executive (Ex) moves with appropriate bot (bl) code
to process data - minimizing movement of data

Center for Advanced Intelligent
Systems

Tuple Space - Strict

I Bot1 I

I Bot 2 I

Bot n

~~

Tuple Space 1
Executwe Code Tuple

Bot 1 Code Tuple
Bot 2 Code Tuple

Bot n Code Tuple

When a Bot(!) is no longer needed, helshe can inform the executfve and remove code from
TS

Center for Advanced Intelligent

:AIS
Adding to theTuple Space - Strict

Bot 1

Bot 2 I
I Boti

I Botn I

I Botn+l EX I
Bot n+l Code Tuple

I
When a new bot (n+l) becomes available - helshe can add code to the tuple space and
inform the executive

Center for Advanced Intelligent
Systems

4

